WATER (RESOURCE) CONSERVATION USING CLOSED-LOOP, EVAPORATIVE COOLING SYSTEMS FOR POWER PLANT APPLICATIONS

Energy-Water Needs Workshop – Eastern Region Baltimore, Md.

December 2005

Peter G. Demakos, P.E.

Niagara Blower Co.

Agenda

- Closed Loop, Evaporative Cooler (Wet Surface Air Cooler Fundamentals)
- Water Issues
- Packaged and Field Erected Systems
- Advanced Cooling System Designs
- Case Studies
- Summary

Wet Surface Air Cooler (WSAC)

- What is it?
 - Heat Removal Device
- Where is it used in Power Plants?
 - Aux Loop Liquid Cooling
 - Turbine Exhaust Vacuum Steam Condensing
 - Inlet Air Refrigerant Condensing
- What are the benefits?
 - Poor quality water can be used as makeup
 - Reduces plant water requirements and discharge
 - Less HP required / more available power to grid

How Does the WSAC Work?

1.) Typical Shell & Tube Heat Exchanger

2.) Remove "Shell" Exposing Tubes

3.) Spray Water Directly Over the Exposed Tubes

4.) Air is Induced Over Tubes in the Same Direction as the Water

How Does the WSAC Work? * Air is transferred induced from the downward cascading over tube water to the bundles air stream via PROCESS STREAM vaporization * Water Air stream flows forced to turn downward 180° providing along with maximum free the air water removal **BASIN AND** # Heat from PLENUM CHAMBER Fans discharge air vertically at a the process high velocity stream is preventing released to the recirculation cascading water

Breakdown of Current Industrial Cooling Technology

3 Cooling Technology Options

Cooling Tower / Heat Exchanger

Dry / Air Cooled

Wet Surface Air Cooler (WSAC)

Unit Configurations

All Metal Unit

Field Erected Unit

Water Issues

- Evaporation
- Cycles of Concentration
- Drift
- Plume
- PM10
- Water Makeup

Water Issues

EVAPORATION(GPM) = HEAT LOAD (Btu/hr)/500,000 MAKEUP = EVAPORATION + BLOWDOWN CYCLES OF CONCENTRATION = MAKEUP / BLOWDOWN

General Specifications for WSAC

- Spray WaterDistribution System
 - Low-pressure / Highflow design
 - Full flooded spray pattern
 - Heavy duty construction
 - PVC pipe for assembled on site units

Water Issues

• Drift

- Based on Spraywater Rate
- "Standard" drift .02% / .005% standard (with drifts)

Plume

- Visual Discharge: Vapor Condensing in Atmosphere
- Plume Abatement for Visually / Environmentally Sensitive Areas

• PM10

- WSAC Meets or Exceeds PM 10 Requirements up to 10 mmeters
- Lower Total Emissions / Lower Discharge Height

Water Issues

- Water Makeup
 - Blowdown from Cooling Towers and Boilers
 - Waste streams from Demineralizers, HRSG and RO
 - Waste Treatment Plant Effluent
 - Brackish, Seawater

Wet / Dry System Options for Water Limited Plants

Independent Steam Condensing and Aux Loop Cooling Systems

Independent Steam Condensing and Aux Loop Cooling Systems

MAKEUP WATER SAVINGS
63 MILLION gal/yr

BLOWDOWN WATER REDUCTION
63 MILLION gal/yr

PARASITIC ENERGY SAVINGS
514 HP

Reducing Water Consumption in Existing Facilities

200,000 GPM - 104°F in / 81°F out

Reducing Water Consumption in Existing Facilities

200,000 GPM - 104°F in / 81°F out

5% FRESH WATER REDUCTION

MAKEUP WATER SAVINGS $5,350 \text{ gpm} \rightarrow 5,100 \text{ gpm} = 250 \text{ gpm}$

120 MILLION gal/yr

BLOWDOWN WATER REDUCTION
550 gpm → 300 gpm = 250 gpm

120 MILLION gal/yr

\$\$ COSTS FOR: WATER ...DISPOSAL...TREATMENT

AIR COOLED HEAT EXCHANGER VS. WSAC FLUID COOLER

AIR COOLED HEAT EXCHANGER VS WSAC

12,000 gpm flow rate

PLOT AREA SAVINGS 8,000 FT2 → 1900 FT2 gpm

75% LESS SPACE REQUIRED

HORSEPOWER SAVINGS $640 \text{ HP} \rightarrow 200 \text{ HP}$

450 LESS HP REQUIRED (70%)

MAKEUP WATER REQUIRED

128 gpm NEEDED

LOWER INSTALLED COST

60% LOWER COST

Lowering Process Outlet Temperatures

Ambient Conditions: 92°F Dry Bulb --- 80°F Wet Bulb

Process Loop Conditions: 140°F in --- 112°F out

NEW Process Loop Conditions: 140°F in --- 90°F out

De-Bottlenecking of Existing Air-Cooled Systems

Cost Analysis Water Quality & Tube Material

Quality

Design Considerations

WSAC Demonstration Project

New Mexico Power Plant

- •Funded by EPRI & DOE
 - •Kent Zammit, EPRI

John Maulbetsch, Consultant

•Barbara Carney, NETL / DOE

Mike DiFilippo, Consultant

- •Test water quality limits in a WSAC
- •Monitor unit performance using cooling different sources of water as spray system makeup:
 - -2005 Cooling Tower Blowdown (river water makeup)
 - -2006 "Produced" Water from the Mining Process

WSAC Demonstration Project

WSAC Demonstration Project New Mexico Power Plant

- •WSAC unit built with different tube materials:
 - -Duplex Stainless; 90/10 Cu-Ni; Titanium; "Sea Cure"
- •Operating at 35 50 cycles of concentration using cooling tower blowdown as WSAC makeup

•NO DEGRADATION OF THERMAL PERFORMANCE

INSTALLATIONS

Packaged Water Cooler

Aux Cooler for 4 – 50 MW Gas Turbines With 50% Reserve Capacity

Factory Assembled Frame Turbine Auxiliary Fluid Cooler

LARGE ERECT IN PLACE WSAC FLUID COOLERS

670,000 lb/hr Steam Condensers and Auxiliary Fluid Cooler

Steam Condenser With Remote Basin

Steam Condenser

Condensing 240,000 lbs/hr of steam at 2.33"Hg Abs and cooling 1300 gpm of water for auxiliary cooling purposes.

Gas Turbine Inlet Air Cooling Components

12,000 TON AMMONIA CONDENSER GRIFFITH, AZ

Advantages of Closed-Loop, Wet Surface Air Cooler Technology

- Poor Quality Water can be used as makeup source
- Higher cycles of concentration (less discharge)
- Lower HP required / more available power to grid
- Maintains Thermal Performance Consistent over Time
- Lower installed cost

WATER (RESOURCE) CONSERVATION USING CLOSED-LOOP, EVAPORATIVE COOLING SYSTEMS FOR POWER PLANT APPLICATIONS

Energy-Water Needs Workshop – Eastern Region Baltimore, Md.

December 2005

Peter G. Demakos, P.E.

Niagara Blower Co.

Buffalo, NY